Problem 3.16

Show that two noncommuting operators cannot have a complete set of common eigenfunctions. Hint: Show that if \hat{P} and \hat{Q} have a complete set of common eigenfunctions, then $\left[\hat{P},\hat{Q}\right]f=0$ for any function in Hilbert space.

Solution

Suppose that \hat{P} and \hat{Q} have a complete set of common eigenfunctions.

$$\hat{P}f_n(x) = p_n f_n(x)$$

 $\hat{Q}f_n(x) = q_n f_n(x)$

Because the set of eigenfunctions is complete, any function in Hilbert space can be written as a linear combination of them.

$$f(x) = \sum_{n=1}^{\infty} c_n f_n(x)$$
 (3.11)

The aim is to show that $\left[\hat{P},\hat{Q}\right]=0$ for any function in Hilbert space.

 $\left[\hat{P},\right]$

$$\begin{split} \hat{Q} \bigg] f(x) &= \left(\hat{P}\hat{Q} - \hat{Q}\hat{P} \right) f(x) \\ &= \hat{P}\hat{Q}f(x) - \hat{Q}\hat{P}f(x) \\ &= \hat{P}\hat{Q}\sum_{n=1}^{\infty} c_n f_n(x) - \hat{Q}\hat{P}\sum_{n=1}^{\infty} c_n f_n(x) \\ &= \hat{P}\sum_{n=1}^{\infty} c_n [\hat{Q}f_n(x)] - \hat{Q}\sum_{n=1}^{\infty} c_n [\hat{P}f_n(x)] \\ &= \hat{P}\sum_{n=1}^{\infty} c_n [q_n f_n(x)] - \hat{Q}\sum_{n=1}^{\infty} c_n [p_n f_n(x)] \\ &= \sum_{n=1}^{\infty} c_n q_n [\hat{P}f_n(x)] - \sum_{n=1}^{\infty} c_n p_n [\hat{Q}f_n(x)] \\ &= \sum_{n=1}^{\infty} c_n q_n [p_n f_n(x)] - \sum_{n=1}^{\infty} c_n p_n q_n f_n(x) \\ &= 0 \\ &= (0) f(x) \end{split}$$

 $\left[\hat{P},\hat{Q}\right] = 0$ for any function in Hilbert space, so \hat{P} and \hat{Q} commute. Therefore, two noncommuting operators cannot have a complete set of common eigenfunctions.

www.stemjock.com